

CLASS : XIth DATE :

SUBJECT : MATHS DPP NO. :4

Topic :-MATHEMATICAL REASONING

1.	If <i>p</i> and <i>q</i> are two state a) Contradiction	ements, then $(p \Rightarrow q) \Leftrightarrow (\sim b)$ Tautology	$q \Rightarrow \sim p$) is a c) Neither (a) nor (b)	d) None of these		
2.	The logically equivalent a) $(p \rightarrow q) \lor (q \rightarrow p)$	t proposition of $p \rightarrow q$ is b) $(p \lor q) \rightarrow (p \lor q)$	c) $(p \land q) \land (p \lor q)$	d) $(p \rightarrow q) \land (q \rightarrow p)$		
3.	If p and q are statements, then $\sim (p \land q) \lor \sim (q \Leftrightarrow$ a) Tautology c) Neither tautology nor contradiction		 <i>p</i>) is b) Contradiction d) Either tautology or contradiction 			
4. this	Consider the proposition : " If the pressure increases, the volume decreases:. The negation of is proposition is a) If the pressure does not increase the volume does not decrease b) If the volume increases, the pressure decreases c) If the volume does not decreases, the pressure does not increase d) If the volume decreases, then the pressure does not increase					
5.	The dual of the statement a) $p \lor (\sim q) \lor \sim p$	ent $[p \lor (\sim q)] \land (\sim p)$ is b) $(p \land \sim q) \lor \sim p$	c) <i>p</i> ∧~(<i>q</i> ∨~ <i>p</i>)	d)None of these		
6.	Which of the following a) $p \rightarrow q$	is logically equivalent to b) $\sim p \land \sim q$	o (p∧q)? c) p∧~q	d) $\sim (p \rightarrow \sim q)$		
7.	 The proposition p→~(p∧~q) is a) A contradiction b) A tautology c) Either a tautology or a contradiction d) Neither a tautology nor a contradiction 					
8.	Which of the following a) A quadratic equation	statement has the truth n has always a real root	value 'F'?			

b) The number of ways of seating 2 persons in two chairs out of n persons is P(n, 2)

- c) The cube roots of unity are in GP
- d) None of the above
- 9. The negative of the proposition : "If a number is divisible by 15, then it is divisible by 5 or 3"
 - a) If a number is divisible by 15, then it is not divisible by 5 and 3
 - b) A number is divisible by 15 and it is not divisible by 5 and 3
 - c) A number is divisible by 15 and it is not divisible by 5 or 3
 - d) A number is not divisible by 15 or it is not divisible by 5 and 3
- 10. $p \land q \rightarrow p$ is
 - a) A tautology
 - b) A contradiction
 - c) Neither a tautology *n*or a contradiction
 - d) None of these
- 11. All teachers are scholar, Identify the Venn diagram

12.	the negation of the stat a) he is not rich and no c) he is rich and happy	ement "he is rich and ha t happy	ppy" is given by b) he is not rich or not happy d) he is not rich and happy			
13.	The property $\sim (p \land q) \equiv$ a) Associative law	∼p∨∼q is called b)De morgan's law	c) Commutative law	d)Idempotent law		
14.	The negation of the coral $(p \land \neg q) \land \neg p$	npound proposition $p \lor (p \land \neg q) \lor \neg p$	$(\sim p \lor q)$ is c) $(p \land \sim q) \lor \sim p$	d)None of these		
15.	The negation of $q \vee \sim (p \land q)$ a) $\sim q \vee \sim (p \land r)$	∧r) is b)~q∨(p∧r)	c) $\sim q \wedge (p \wedge r)$	d)~ q ^~(p ^ r)		
16.	 ~(~p)↔pis a) A tautology b) A contradiction c) Neither a contradiction nor a tautology d) None of these 					
17.	The contrapositive of 2 a) $x = 4 \Rightarrow 2x + 3 \neq 9$	$x + 3 = 9 \Rightarrow x \neq 4 \text{ is}$ b) $x = 4 \Rightarrow 2x + 3 = 9$	9 c) <i>x</i> ≠4⇒2 <i>x</i> + 3≠9	$d)x \neq 4 \Rightarrow 2x + 3 = 9$		
18.	Negation of the conditi a) It rains and I shall go c) It does not rains and	egation of the conditional, "If it rains, I shall go to school" is I t rains and I shall go to school b) It rains and I shall not go to school It does not rains and I shall go to school d) None of the above				

19.	If a compound statement	nt <i>r</i> is contradiction, the	n the truth value of ($p \Rightarrow$	$q) \land r \land p[p \Rightarrow \sim r]$ is
	a) <i>TM</i>	b) <i>F</i>	c) <i>T</i> or <i>F</i>	d) None of these

- 20. The statement $p \vee \sim p$ is
 - a) Tautology
 - c) Neither a tautology nor a contradiction

b)Contradiction d)None of the above